Negative Regulation of dE2F1 by Cyclin-Dependent Kinases Controls Cell Cycle Timing

نویسندگان

  • Tânia Reis
  • Bruce A Edgar
چکیده

Many types of cells compensate for induced alterations in the length of one cell cycle phase (G1, S, or G2) by altering the lengths of the other phases. Here we show that, when cells in Drosophila wing discs are delayed in G1, they maintain normal division rates by accelerating passage through S and G2. Similarly, when G2-->M progression is retarded, G1-->S progression accelerates. This compensation mechanism employs negative feedback in which the cyclin-dependent kinases Cdk1 and Cdk2 downregulate the transcription factor dE2F1. dE2F1, in turn, positively regulates cyclin E and string/cdc25, which activate the Cdks to drive cell cycle progression. This homeostatic mechanism coordinates rates of G1-->S and G2-->M progression, maintaining normal rates of proliferation when cell cycle controls are perturbed (e.g., by ectopic Dacapo, dWee1, dMyc, or Rheb). Without dE2F1, the compensatory mechanism fails, and treatments that alter Cdk activity cause aberrant cell cycle timing and cell death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of Flavopiridol Binded to Transition Metals

More recently medical chemistry research has been focused on proteins that drive and controlcell cycle progression. Among them, the cyclin dependent kinases (cdk’s) are a group ofserine/threonine kinases, which rule the transition between successive stages of the cell cycle. Theactivity of cdk’s is regulated by multiple mechanisms, including binding to cyclins, which is a broadclass of positive...

متن کامل

Cyclin transcription: Timing is everything

The stage-specific activation of cyclin-dependent kinases controls the order and timing of cell-cycle transitions. Recent studies offer insight into the mechanism of cell-cycle-regulated transcription of the mitotic cyclins of budding yeast.

متن کامل

Inhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519

An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...

متن کامل

Inhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519

An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...

متن کامل

PP2A function toward mitotic kinases and substrates during the cell cycle

To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2004